激烈的性高湖波多野结衣,奶头好大摸着好爽免费视频,中文字幕av无码一区电影dvd,久久综合给久久狠狠97色
網(wǎng)站首頁
關于我們
產(chǎn)品中心
新聞中心
技術文章
聯(lián)系我們
聯(lián)系我們
聯(lián)系我們
在線留言
技術文章
Technical articles
熱門搜索:
摩方精密3D打印
高精密增材制造3D打印
微尺度3D打印設備
microArch S240A10μm高精度微納3D打印
nanoArch P14010μm精度微納3D打印系統(tǒng)
nanoArch S1302μm精度微納3D打印系統(tǒng)
nanoArch S14010μm精度微納3D打印系統(tǒng)
科研3D打印機
nanoArch P15025μm高精密3D打印系統(tǒng)
數(shù)字微流控芯片
光敏樹脂3D打印
nanoArch S1303D打印微針
微納增材制造
microArch S240---3D打印連接器
nanoArch S1403d打印精密醫(yī)療內(nèi)窺鏡
光固化3D打印
技術文章
當前位置:
首頁
技術文章
ACS AMI:3D打印仿生功能器件實現(xiàn)微網(wǎng)格結(jié)構水下自清潔
ACS AMI:3D打印仿生功能器件實現(xiàn)微網(wǎng)格結(jié)構水下自清潔
更新時間:2023-02-17
點擊次數(shù):922
金魚藻具有獨。特的莖和葉的氣孔,其莖葉呈帶狀,寬度小于0.5 mm,有利于在日照和空氣有限的情況下有效進行光合作用(圖1a-c)。此外,金魚藻莖葉上的氣孔不僅能與周圍環(huán)境交換氣體進行呼吸,還能阻止外界水流的流入,這對金魚藻在水下的生存至關重要。
圖1. 一種仿生功能開放細胞。(a)金魚藻。(b)金魚藻表面覆蓋著獨。特的氣孔。(c)金魚藻表面單氣孔示意圖。(d)利用PμSL 3D打印技術制備仿生開孔
細胞。
受此啟發(fā),
湖南大學王兆龍副教授、段輝高教授與中科院理化所董智超研究員,東南大學陳永平教授及上海交通大學鄭平院士
合作,在《ACS Applied Materials & Interfaces》期刊上發(fā)表了題為“Underwater unidirectional cellular fluidics"的文章。該文章利用面投影微立體光刻技術(nanoArch S140,摩方精密)制備了原樣品。在經(jīng)過處理后,形成了外表面超親水和內(nèi)表面疏水的多孔仿生微結(jié)構(特征尺寸400微米),其不同接濕潤性產(chǎn)生的拉普拉斯力(圖2)保證了多孔仿生微結(jié)構的液體單向性能,這使液體被多孔仿生微結(jié)構阻擋在外,而在多孔仿生微結(jié)構內(nèi)的液體和氣體能被排出。此外,多孔仿生微結(jié)構的幾何參數(shù)對其獨。特的單向流態(tài)性能有很大的影響。該團隊也從理論上揭示了液體在3D打印多孔仿生微結(jié)構中的單向滲透機理。最終,還展示了多孔仿生微結(jié)構在水下厭氧化學反應的潛在應用。這種多孔仿生微結(jié)構為水下化學和微流體工程的潛在應用打開了一扇大門,如易燃材料的儲存、快速固液分離和厭氧化學反應。
圖3.仿生網(wǎng)格在水下的單向流態(tài)特性研究。(a)水穿透孔的示意圖。(b)不同情況下微孔的水接觸線。(c)微孔外水滴的拉普拉斯壓力。(d)仿生網(wǎng)格的單向滲透示意圖。(e)水下細胞流體性能測試模型。(f)兩個孔之間的距離對單向流體性能的影響。(g)孔寬對單向流態(tài)性能的
影響。
實驗結(jié)果表明,由于毛細力的作用(圖3a-ⅰ),水在孔的末端以較高的速度上升(圖3a-ⅱ)。而由于慣性作用,水將會在達到出口之后繼續(xù)上升(圖3a-ⅲ),同時,拉普拉斯壓力隨著孔口液滴彎月面曲率減小而逐漸增大。當拉普拉斯壓力達到最大時,如果水的動能使動態(tài)接觸角大于表面前進接觸角,水將會從孔中溢出(圖3a-c)。因此,鑒于內(nèi)
表面具備疏水性,水不能滲透到多孔仿生微結(jié)構內(nèi) (圖3d-ⅰ)。相反,由于另外一側(cè)是超親水表面,最大拉普拉斯力接近0,水將從多孔仿微結(jié)構疏水側(cè)滲透到親水側(cè)(圖3d-ⅱ),從而使得該仿生結(jié)構具有優(yōu)異的單向液體穿透能力。
多孔仿生微結(jié)構在水下的單向滲透性能由仿生網(wǎng)格結(jié)構失去單向性前的最大水深來表征(圖3e-ⅰ)。矩形孔在水下的單向流控性能最好,而三角形孔仿生膜的性能最差。此外,微結(jié)構厚度對仿生膜單向流控性能也有較大的影響,在100 μm至1000 μm范圍內(nèi),仿生膜的可持續(xù)水深隨膜厚的增加而增加。但隨著膜厚的增加,可承受水
深將保持在75 mm左右。兩孔間距、孔寬對仿生膜水下單向流控性能的影響分別如圖3f、g所示。對于150 μm孔,多孔仿生微結(jié)構的可承受水深僅為10 mm左右。當孔徑為300 μm左右時,可承受水深隨著孔間距的增加迅速增加,達到 45 mm左右。之后,隨著兩孔間距的增加,可承受水深緩慢增加(圖3f)。
圖4. 水下仿生細胞內(nèi)部的化學反應。(a)水下仿生細胞。(b)液滴滴在仿生細胞內(nèi)表面時,仿生細胞的排水特性。(c)液滴滴在仿生細胞外表面時的拒水性能。(d)0.5mol?L
-
1
NaHCO
3
與0.5mol?L
-
1
H
2
SO
4
在仿生細胞內(nèi)的化學反應。(e)0.5mol?L
-
1
FeSO
4
與0.5mol?L
-
1
NaOH在充滿CO
2
的仿生細胞內(nèi)的化學反應。(f)我們的仿生細胞在水下的自清潔性能。
基于仿生網(wǎng)格的優(yōu)異液體單向通過特性,研究人員設計了微網(wǎng)格結(jié)構組成的封閉仿生細胞腔體。該仿生腔體具有疏水的內(nèi)壁面及超親水的外壁面,從而使得外側(cè)的水在一定條件下無法穿過多孔仿生網(wǎng)格進入仿生細胞腔體內(nèi),從而形成水下密閉空間。該仿生細胞腔體被應用于微反應器(圖4a-c)。研究結(jié)果表明,由于網(wǎng)格微米孔的存在,產(chǎn)生的氣體可以自由出入仿生細胞(圖3a-ⅲ),并且可在水下形成無氧環(huán)境,進而可實現(xiàn)保護氣作用下的特殊化學反應。最重要的是,由于仿生網(wǎng)格獨。特的液體單向特性,該仿生細胞在反應結(jié)束后會快速排出腔體內(nèi)的所有液體,具有極為優(yōu)異的水下自清潔特性。
該項研究成果獲得國家自然科學基金委,湖南省優(yōu)秀青年基金,廣東省重大專項及國防科工局民用航天項目等研究項目支持,以“Underwater unidirectional cellular fluidics"為題發(fā)表于國際知。名期刊《ACS Applied Materials & Interfaces》,14,7 (2022) 9891–9898
,
其中,湖南大學謝明鑄碩士生為第一作者。
上一條
北理:面向超寬帶聲束工程的色散定制化消色差超構表面
下一條
通過分級互鎖結(jié)構設計獲得高靈敏與寬線性傳感的柔性壓力傳感器
在線客服
電話咨詢
服務熱線:
15261868162
在線咨詢
關注公眾號